

UxV/35 Ardupilot
Development

Kairos Autonomi®
© 2024
V:\Kairos_Documentation\R&D\
UxV35_Ardupilot_Development.pdf

UxV/35 Ardupilot Development

Page 1 of 6
v01.01.00

Kairos Software Development for Ardupilot
20 Sept. 2024

Introduction
Ardupilot currently lacks flexibility in supporting custom unmanned aerial systems (UAS)
payloads. This includes controlling payloads, transmitting data to ground control stations
(GCS), and receiving commands from payloads. Kairos has therefore implemented the
initial steps required for supporting these tasks. Documented in this paper are two
modifications to the Ardupilot software.

The first task was to create new Mavlink parameters that can be modified on the UAS
flight controller and transmitted to a GCS.

A second task was to implement a custom serial protocol that can be adapted to
communicate with payloads on the UAS.

Background on the Framework

Ardupilot is the autopilot software running on the UxV/35 Mission Controller (KA1003-01).
While this software has a wide range of capabilities and features, Kairos and its
customers are reaching a point that exceeds Ardupilots capabilities. The solution being
implemented in this document is depicted in the diagram above.

By implementing custom serial protocols and parameters, Kairos provides a framework
onboard the UxV/35 UAS to directly transmit and received data between payloads and
GCSs. Payloads communicate with the flight controller through a custom serial protocol.
The flight controller then processes this data to update custom parameters and
optionally execute actions based on these updates. Payload data contained in the
custom parameters is then transmitted to the GCS using the existing telemetry radio
being used to control the drone. This payload data can be viewed on the GCS and
commands can be sent back through the framework to control the payload.

UxV/35 Ardupilot
Development

Kairos Autonomi®
© 2024
V:\Kairos_Documentation\R&D\
UxV35_Ardupilot_Development.pdf

UxV/35 Ardupilot Development

Page 2 of 6
v01.01.00

Kairos believes that the Mavlink telemetry link is sufficient for many of these early tasks.
Currently Kairos knows that the telemetry link can handle real-time concurrent
transmission of 4 distance sensors while a UAS is flying. It should be acknowledged
though that control of the drone is the first priority and that payload data transmission
likely will reach a bandwidth limitation. Kairos does have plans to find this bandwidth
limit through stress testing (long distances and large data transmission) and determine
what the behavior is as the limit is approached. Safeguards will likely need to be
established to prevent a payload from compromising the telemetry link.

Creating New Parameters
Background:
 Within the Ardupilot flight controller software are a long list of parameters used to
configure and report the behavior of the UAS. Some of these parameters are static and
used for initial setup, while others are updated at various frequencies to report status.

Documentation of Changes:
 Adding new parameters requires changing of three files in the Ardupilot
codebase.
Ardupilot/ArduCopter/Parameters.h

 Parameters are indexed under multiple classes. For testing, Kairos added a
parameter to the ParametersG2 class.

AP_Int8 ka_custom;

Ardupilot/ArduCopter/Parameters.cpp

 The new parameter is then declared with descriptors used to set the range, and
display information to a MissionPlanner GCS.

const AP_Param::Info Copter::var_info[] = {
 // @Param: KA_CUSTOM
 // @DisplayName: Custom KA Param
 // @Description: Used for custom KA Functions
 // @Range: 0 63
 // @User: Standard
 AP_GROUPINFO("KA_CUSTOM", 59, ParametersG2, ka_custom, 0),
}

Ardupilot/ArduCopter/config.h
 Finally, the default for the parameter is set

#ifndef KA_CUSTOM
#define KA_CUSTOM 0 //Default

#endif

Implementing New Serial Protocols
Background:
 Ardupilot has a list of roughly 40 serial protocols for communicating with the flight
controller. Each protocol is typically configured to communicate with a specific device or
utility and execute a specific task on the flight controller.

UxV/35 Ardupilot
Development

Kairos Autonomi®
© 2024
V:\Kairos_Documentation\R&D\
UxV35_Ardupilot_Development.pdf

UxV/35 Ardupilot Development

Page 3 of 6
v01.01.00

Documentation of Changes:
 Adding serial protocols is more involved, but revolves around the Ardupilot
SerialManager. A library folder is then created for the new protocol and that folder is
added to the list of dependencies compiled when Ardupilot is built.

Ardupilot/libraries/AP_SerialManager (.cpp and .h)
 In SerialManager.h

 Define defaults for the new protocol
#define AP_SERIALMANAGER_KACUSTOM_BUFSIZE_RX 128
#define AP_SERIALMANAGER_KACUSTOM_BUFSIZE_TX 128
#define AP_SERIALMANAGER_KACUSTOM_BAUD 115200

 Add the new protocol to the list of options
SerialProtocol_KACustom = 45,

 In SerialManager.cpp
 Add a case for initializing the protocol if selected

case SerialProtocol_KACustom:
 uart->begin(state[i].baudrate(),
 AP_SERIALMANAGER_KACUSTOM_BUFSIZE_RX,
 AP_SERIALMANAGER_KACUSTOM_BUFSIZE_TX);
 hal.console->printf("Initializing KACustom.\n");
 AP_KACustom::get_singleton()->init_serial(i);
 break;

Ardupilot/libraries/AP_KACustom (.cpp and .h)
 In AP_KACustom.h

 Define public and private constructors, functions, variables, and UART driver
class AP_KACustom {
public:
 // Constructor
 AP_KACustom() {}

 // Initialize the serial protocol
 void init_serial(uint8_t serial_instance);
 // Update function that will be called regularly
 void update();
 static AP_KACustom* get_singleton();
protected:
 // Define the UART driver for serial communication
 AP_HAL::UARTDriver* uart = nullptr;
 // Baudrate initialization function
 virtual uint32_t initial_baudrate(uint8_t serial_instance) const;
 // Buffer size initialization
 virtual uint16_t rx_bufsize() const { return 128; }
 virtual uint16_t tx_bufsize() const { return 128; }
 // Helper function to send a test message

UxV/35 Ardupilot
Development

Kairos Autonomi®
© 2024
V:\Kairos_Documentation\R&D\
UxV35_Ardupilot_Development.pdf

UxV/35 Ardupilot Development

Page 4 of 6
v01.01.00

 void send_test_message();
 // This is a placeholder for future expansion when you want to get readings
or data
 virtual bool get_reading();
private:
 static AP_KACustom* _singleton;
};

In AP_KACustom.cpp
 Create functions to initialize an instance and send UART data

_KACustom* AP_KACustom::_singleton = nullptr;
AP_KACustom *AP_KACustom::get_singleton()
{
 if (!_singleton) {
 _singleton = new AP_KACustom();
 }
 return _singleton;
}
void AP_KACustom::init_serial(uint8_t serial_instance) {
 // Find the UART associated with the custom protocol
 uart =
AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_KACusto
m, 0);
 if (uart != nullptr) {
 //uart->begin(initial_baudrate(serial_instance), rx_bufsize(),
tx_bufsize());
 }
}
uint32_t AP_KACustom::initial_baudrate(uint8_t serial_instance) const {
 // Define the baudrate for the protocol
 return 115200; // Example baud rate, customize as needed
}
void AP_KACustom::update() {
 if (uart != nullptr) {
 // Call the function to send a test message or process data
 hal.console->printf("AP_KACustom update() called.\n");
 send_test_message();
 }
}

void AP_KACustom::send_test_message() {
 if (uart != nullptr) {
 // Example of sending "test" message over the UART
 uart->printf("test\n");
 }
}
bool AP_KACustom::get_reading() {
 // Placeholder function for reading data, return false for now

UxV/35 Ardupilot
Development

Kairos Autonomi®
© 2024
V:\Kairos_Documentation\R&D\
UxV35_Ardupilot_Development.pdf

UxV/35 Ardupilot Development

Page 5 of 6
v01.01.00

 return false;
}
namespace AP {
 AP_KACustom& kac()
 {
 return *AP_KACustom::get_singleton();
 }
};

Ardupilot/Tools/ardupilotwaf.py
 In ardupilotwaf.py

 Add AP_KACustom to the list of dependencies compiled by waf
COMMON_VEHICLE_DEPENDENT_LIBRARIES = [
 ‘AP_KACustom’,
]

Summary
While these first steps are a basic implementation, they should help demonstrate that
this goal for a framework is very achievable. With further development, there is a
powerful list of potential capabilities down the road.

 Onboard transmission of payload data to GCS with no additional radio

links

 Control of a payload from a GCS with no additional radio links

 Communication between payload and flight controller which allows for a

payload controlled UAS and a UAS controlled payload

 Pathways to create new UAS behaviors

 Streamlined integration of new sensors, radios, and other technologies

 Standardized and documented interaction of payloads with Kairos drones

to greatly simplify the development process for 3rd parties

UxV/35 Ardupilot
Development

Kairos Autonomi®
© 2024
V:\Kairos_Documentation\R&D\
UxV35_Ardupilot_Development.pdf

UxV/35 Ardupilot Development

Page 6 of 6
v01.01.00

Kairos Autonomi
8700 S. Sandy Pkwy.
Sandy, Utah 84070
801-225-2950 (office)
801-907-7870 (fax)
www.kairosautonomi.com

Version History

Date and
Signature

Revisions Reasons for Revision

09/20/2024
Jack R.

Document was written. (v01.00.00)

09/24/2024
Jack R.

Expansion of Background of Framework
(v01.01.00)

Feedback on document

http://www.kairosautonomi.com/

